Abstract

AbstractMagnetosheath jets with enhanced dynamic pressure are common in the Earth's magnetosheath. They can impact the magnetopause, causing deformation of the magnetopause. Here we investigate the 3‐D structure of magnetosheath jets using a realistic‐scale, 3‐D global hybrid simulation. The magnetosheath has an overall honeycomb‐like 3‐D structure, where the magnetosheath jets with increased dynamic pressure surround the regions of decreased dynamic pressure resembling honeycomb cells. The magnetosheath jets downstream of the bow shock region with θBn ≲ 20° (where θBn is the angle between the upstream magnetic field and the shock normal) propagate approximately along the normal direction of the magnetopause, while those downstream of the bow shock region with θBn ≳ 20° propagate almost tangential to the magnetopause. Therefore, some magnetosheath jets formed at the quasi‐parallel shock region can propagate to the magnetosheath downstream of the quasi‐perpendicular shock region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.