Abstract

Graphitic carbon nitride (g-C3N4)-based materials are regarded as one of the most potential photocatalysts for utilizing solar energy. In this work, we reported a facile one step in-situ hydrothermal-roasting method for preparing honeycomb-like g-C3N4/CeO2 nanosheets with abundant oxygen vacancies (g-C3N4/CeO2-x). The hydrothermal-roasting and incomplete-sealed state can (i) generate an in-situ reducing atmosphere (CO, N2, NH3) to tune the concentration of oxygen vacancies in CeO2; (ii) beneficial to prevent continuous growth of g-C3N4 and results in honeycomb-like g-C3N4/CeO2-x hybrid nanosheets. What is more, the g-C3N4/CeO2-x photocatalyst exhibited extended photoresponse range, increased specific surface area and obviously enhanced separation efficiency of photogenerated electron-hole pairs. As a proof-of-concept application, the optimized g-C3N4/CeO2-x nanosheets could achieve 98% removal efficiency for Cr(VI) under visible light irradiation (λ ≥ 420 nm) within 2.5 h, which is significantly better than those of pure g-C3N4 and CeO2. This work provides a new idea for more rationally designing and constructing g-C3N4-based catalysts for efficient extended photochemical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call