Abstract
Phosphorus-rich iron phosphides (FeP2) have been regarded as excellent anode candidates for lithium storage owing to their low cost, high natural abundance, high theoretical capacity, and reasonable redox potential. However, FeP2 suffers from a few challenging problems such as low reversibility, fast capacity degradation, and big volume variation. Herein, we have designed and synthesized a 3D honeycomb-like carbon skeleton with embedded FeP2 nanoparticles (denoted as FeP2 NPs@CK), which can significantly promote the kinetics and maintain the structural stability during the cycling, resulting in an excellent electrochemical performance reflected by high reversibility and long-term cycling stability. FeP2 NPs@CK shows high reversibility, delivering a reversible capacity as high as 938 mA h g-1 at 0.5 A g-1. It also shows excellent cycling stability, delivering a capacity of 620 mA h g-1 after 500 cycles at 1 A g-1. Moreover, the fast kinetics and lithium storage mechanism of FeP2 NPs@CK are investigated by quantitative analysis and in situ X-ray diffraction. Such superior performance demonstrates that FeP2 NPs@CK could be a promising and attractive anode candidate for lithium storage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.