Abstract

Emergent fermions arising from the excess electrons of electrides provide a new perspective for exploring semimetal states with unique Fermi surface geometries. In this study, a class of unique two-dimensional (2D) highly anisotropic Dirac fermions is designed using a sandwich structure. Based on the structural design and first-principles calculations, 2D electride MB (M = Ca/Sr, B = Cl/Br/I) is an ideal candidate material. The excess electrons of the bilayer MB could be stably localized in the interstitial cavities, constructing a natural zigzag honeycomb electron sublattice that further forms a Dirac fermion. Compared with traditional Dirac semimetals, 2D Dirac electrides exhibited rich physical properties: i) The Fermi surface shows trigonal warping in low-energy regions. In particular, the geometry of the Fermi surface determines the high anisotropy of the Fermi velocity. ii) A pair of Dirac fermions are protected by three-fold rotational symmetry and exhibit strong robustness. iii) Electride MB possesses a lower work function that strongly correlates with the surface area of the emission channel. Based on these properties, an electron-emitting device with multifunctional applications is fabricated. Therefore, this study provides an ideal platform for studying potential entanglement between structures, electrides, and topological states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call