Abstract

The aim of the study was to use melissopalynology to delineate the foraging preferences of bees in tropical environs. This was done by comparing pollen spectra obtained from the same hives every three months for three years at four sampling locations (in two sites) within a confined landscape mosaic. If melissopalynology is highly replicable, the spatial variation of the pollen spectrum from the honey samples would be much more than the temporal (inter-annual) variations. In other words, given the three factors, Month, Year and Location, honey pollen from different Locations, in a given Year and Month, would be much less similar than samples from different Years, in a given Location and Month. We then determined how the factors, Month, Year and Location, influenced the pollen influx of honey. The pollen analyses of the 42 honey samples collected during the three years yielded 80 pollen taxa/types: 72 dicotyledonous and 8 monocotyledonous, encompassing 41 botanical families spread into seven life forms namely, trees, shrubs, epiphytes, herbs, climbers, grasses, and sedges. Our results showed that pollen spectra were equally comparable between Locations and between Months and Years; the importance of this result is that it helped to demonstrate the complexity of ecological/environmental phenomena involved in the process of foraging by bees in a heterogeneous and complex landscape.

Highlights

  • Bees, the primary pollinators of the world, play a crucial role for wild and cultivated plants, especially in the tropics where insect pollination is vital [1,2]

  • Ethics statement The study was conducted in privately owned areas where prior permission was obtained: site 1 to which two of the authors (LD and PP) are affiliated, and site 2 managed by Bernard Declercq and Deepika Kundaji, Auroville

  • Honey pollen content The pollen analyses of the 42 honey samples collected during the three years yielded 80 pollen taxa/types: 72 dicotyledonous and 8 monocotyledonous, encompassing 41 botanical families spread into seven life forms namely, trees, shrubs, epiphytes, herbs, climbers, grasses, epiphytes and sedges (Table S1)

Read more

Summary

Introduction

The primary pollinators of the world, play a crucial role for wild and cultivated plants, especially in the tropics where insect pollination is vital [1,2]. Statistical analyses, mainly ordination, have been carried out on melissopalynological data in quantitative studies to obtain more robust characterization of the honeys in terms of their geographic and botanic origins [20,21,22]. The many variables that come into play in the production of honey, including the ability of honeybees to remove certain types and certain amounts of pollen from the nectar they collect prior to returning to the hive, have been summarized [23]. Though acknowledged that the complexity introduced by these different variables implies a substantial variation from year to year or season to season in terms of the pollen contents of honey produced in the same hive [23], to our knowledge, this replicability, i.e., stability in time and space, has not been tested statistically. This study attempts to fill the gap using the primary data generated in the course of a pluri-annual melissopalynological survey near Puducherry, South India

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.