Abstract

The global trade of honey bee hive products has raised concern about pathogen transmission. However, the efficacy of hive products as virus vehicles is poorly understood. Here, we investigated the transmission capacity of hive products for Deformed wing virus genotype A (DWV-A) in a fully-crossed hoarding cage experiment and estimated the transmission risk by screening commercial products. Western honey bee workers were provided with honey, pollen and wax either contaminated with high (~2 × 109), medium (~1.7 × 108), low (~8 × 106) or zero (control) DWV-A genome copies. For 10 days, mortality was monitored. Then, virus titers were quantified in bee heads and 38 commercial products using RT-qPCR. For honey and pollen, a positive association between DWV-A concentration and mortality was observed. High concentrations always resulted in infections, medium ones in 47% of cases and low ones in 20% of cases. No significant difference was observed between the tested products. In commercial honey and pollen, 7.7 × 102–1.8 × 105 and 1.4 × 103–1.3 × 104 DWV-A copies per gram were found, respectively. The results show that DWV-A transmission via hive products is feasible. The risk of introducing novel viruses and/or strains should be considered in trade regulations by including virus analyses for health certificates of hive products

Highlights

  • The international trade of honey bee products increased over the past decades, thereby enhancing chances for the spread of bee diseases [1,2]

  • Amongst the honey bee pathogens, viruses are not covered by the terrestrial code due to a lack of specific criteria (OIE 2016), even though they are frequently associated with honey bee products and may potentially cause harmful effects [3,4,5]

  • The fully-crossed hoarding cage experiments [44] were conducted from June to August 2015 and designed to test whether or not honey bee products spiked with Deformed wing virus genotype A (DWV-A) are able to induce an infection in honey bees

Read more

Summary

Introduction

The international trade of honey bee products increased over the past decades, thereby enhancing chances for the spread of bee diseases [1,2]. Amongst the honey bee pathogens, viruses are not covered by the terrestrial code due to a lack of specific criteria (OIE 2016), even though they are frequently associated with honey bee products and may potentially cause harmful effects [3,4,5]. This seems surprising because it seems most likely that viruses are spreading as a side effect of the worldwide trade of bee products. It has been shown that queens can hold many viruses at the same time and are able to transmit them vertically to their offspring [3,4,9,10,11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call