Abstract

We present HONEI, an open-source collection of libraries offering a hardware oriented approach to numerical calculations. HONEI abstracts the hardware, and applications written on top of HONEI can be executed on a wide range of computer architectures such as CPUs, GPUs and the Cell processor. We demonstrate the flexibility and performance of our approach with two test applications, a Finite Element multigrid solver for the Poisson problem and a robust and fast simulation of shallow water waves. By linking against HONEI's libraries, we achieve a two-fold speedup over straight forward C++ code using HONEI's SSE backend, and additional 3–4 and 4–16 times faster execution on the Cell and a GPU. A second important aspect of our approach is that the full performance capabilities of the hardware under consideration can be exploited by adding optimised application-specific operations to the HONEI libraries. HONEI provides all necessary infrastructure for development and evaluation of such kernels, significantly simplifying their development. Program summary Program title: HONEI Catalogue identifier: AEDW_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDW_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPLv2 No. of lines in distributed program, including test data, etc.: 216 180 No. of bytes in distributed program, including test data, etc.: 1 270 140 Distribution format: tar.gz Programming language: C++ Computer: x86, x86_64, NVIDIA CUDA GPUs, Cell blades and PlayStation 3 Operating system: Linux RAM: at least 500 MB free Classification: 4.8, 4.3, 6.1 External routines: SSE: none; [1] for GPU, [2] for Cell backend Nature of problem: Computational science in general and numerical simulation in particular have reached a turning point. The revolution developers are facing is not primarily driven by a change in (problem-specific) methodology, but rather by the fundamental paradigm shift of the underlying hardware towards heterogeneity and parallelism. This is particularly relevant for data-intensive problems stemming from discretisations with local support, such as finite differences, volumes and elements. Solution method: To address these issues, we present a hardware aware collection of libraries combining the advantages of modern software techniques and hardware oriented programming. Applications built on top of these libraries can be configured trivially to execute on CPUs, GPUs or the Cell processor. In order to evaluate the performance and accuracy of our approach, we provide two domain specific applications; a multigrid solver for the Poisson problem and a fully explicit solver for 2D shallow water equations. Restrictions: HONEI is actively being developed, and its feature list is continuously expanded. Not all combinations of operations and architectures might be supported in earlier versions of the code. Obtaining snapshots from http://www.honei.org is recommended. Unusual features: The considered applications as well as all library operations can be run on NVIDIA GPUs and the Cell BE. Running time: Depending on the application, and the input sizes. The Poisson solver executes in few seconds, while the SWE solver requires up to 5 minutes for large spatial discretisations or small timesteps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.