Abstract
A Shimura variety of Hodge type is a moduli space for abelian varieties equipped with a certain collection of Hodge cycles. We show that the Newton strata on such varieties are nonempty provided that the corresponding group G is quasisplit at p, confirming a conjecture of Fargues and Rapoport in this case. Under the same condition, we conjecture that every mod p isogeny class on such a variety contains the reduction of a special point. This is a refinement of Honda–Tate theory. We prove a large part of this conjecture for Shimura varieties of PEL type. Our results make no assumption on the availability of a good integral model for the Shimura variety. In particular, the group G may be ramified at p.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.