Abstract

Aims/hypothesisHomozygous staggerer (sg/sg) mice, which have decreased and dysfunctional Rorα (also known as Rora) expression in all tissues, display a lean and dyslipidaemic phenotype. They are also resistant to (high fat) diet-induced obesity. We explored whether retinoic acid receptor-related orphan receptor (ROR) α action in skeletal muscle was involved in the regulation of glucose metabolism.MethodsWe used a three-armed genomic approach, including expression profiling, ingenuity analysis and quantitative PCR validation to identify the signalling pathway(s) in skeletal muscle that are perturbed in sg/sg mice. Moreover, western analysis, functional insulin and glucose tolerance tests, and ex vivo glucose uptake assays were used to phenotypically characterise the impact of aberrant v-AKT murine thymoma viral oncogene homologue (AKT) signalling.ResultsHomozygous and heterozygous (sg/sg and sg/+) animals exhibited decreased fasting blood glucose levels, mildly improved glucose tolerance and increased insulin sensitivity. Illumina expression profiling and bioinformatic analysis indicated the involvement of RORα in metabolic disease and phosphatidylinositol 3-kinase–AKT signalling. Quantitative PCR and western analysis validated increased AKT2 (mRNA and protein) and phosphorylation in sg/sg mice in the basal state. This was associated with increased expression of Tbc1d1 and Glut4 (also known as Slc2a4) mRNA and protein. Finally, in agreement with the phenotype, we observed increased (absolute) levels of AKT and phosphorylated AKT (in the basal and insulin stimulated states), and of (ex vivo) glucose uptake in skeletal muscle from sg/sg mice relative to wild-type littermates.Conclusions/interpretationWe propose that Rorα plays an important role in regulation of the AKT2 signalling cascade, which controls glucose uptake in skeletal muscle.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-011-2046-3) contains supplementary material, which is available to authorised users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call