Abstract

Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease of peripheral nervous system diseases in which more than 100 genes and their mutations are associated. Two consanguineous families Dera Ghazi Khan (PAK-CMT1-DG KHAN) and Layyah (PAK-CMT2-LAYYAH) with multiple CMT-affected subjects were enrolled from Punjab province in Pakistan. Basic epidemiological data were collected for the subjects. Nerve conduction study (NCS) and electromyography (EMG) were performed for the patients. Whole-exome sequencing (WES) followed by Sanger sequencing was applied to report the genetic basic of CMT. The NCS findings revealed that sensory and motor nerve conduction velocities for both families were <38 m/s. EMG presented denervation, neuropathic motor unit potential, and reduced interference pattern of peripheral nerves. WES identified that a novel nonsense mutation (c. 226 G>T) in GADP1 gene and a previously known missense mutation in MFN2 gene (c. 334 G>A) cause CMT4A (Charcot-Marie-Tooth disease type 4A) in the PAK-CMT1-DG KHAN family and CMT2A (Charcot-Marie-Tooth disease type 2A) in the PAK-CMT2-LAYYAH family, respectively. Mutations followed Mendelian pattern with autosomal recessive mode of inheritance. Multiple sequence alignment by Clustal Omega indicated that mutation-containing domain in both genes is highly conserved, and in situ analysis revealed that both mutations are likely to be pathogenic. We reported that a novel nonsense mutation and a previously known missense mutation in GAPD1 gene and MFN2 gene, respectively, cause CMT in consanguineous Pakistani families.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call