Abstract

Leber congenital amaurosis (LCA) is a rare form of early onset vision loss or blindness due to retinal dystrophy. This condition is characterized by early vision loss, nystagmus and severe retinal dysfunction. To date, genetic studies have reported 19 genes to be associated with autosomal recessive LCA, most of which are involved in the retinal morphology and the physiology of the phototransduction pathway. In the current study, a large consanguineous family segregating congenital blindness was ascertained from the Dera Ismail Khan region of Pakistan. Genetic analysis was performed through genomewide SNP genotyping (for homozygosity-by-descent mapping), whole-exome sequencing (for mutation identification) and Sanger sequencing (for segregation analysis). In silico structural predictions were performed through SWISS-Model (structure prediction) and ClusPro (molecular docking). Molecular investigation of the present LCA family identified a novel homozygous missense mutation p.Asp306Val in GUCY2D gene (NM_000180.3:c.917A>T). In silico structural modelling and interaction studies predicted significant changes in protein folding and interacting residues. The present molecular genetic study further extends the mutational spectrum of GUCY2D in LCA, and its genetic heterogeneity in the Pakistani population. The findings of the computational studies on protein structure and interaction profile predicted pathogenic consequences of p.Asp306Val on GUCY2D function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.