Abstract

Recent advances in tumor immunotherapy mainly tend to remodel the immunosuppressive tumor microenvironment (TME) for immune enhancement. However, the complexity of TME makes it unlikely to achieve satisfactory therapeutic effects with any single intervention alone. Here, we focus on exposing intrinsic features of tumor cells to trigger direct pleiotropic antitumor immunity. We develop a photosensitive nanointerferer that is engineered with a nanoscale metal-organic framework decorated with tumor cell membranes for targeted delivery of a photosensitizer and small interfering RNA, which is used to knock down cyclin-dependent kinase 4 (Cdk4). Cdk4 blockade can arrest the cell cycle of tumor cells to facilitate antigen exposure and increase the expression level of programmed cell death protein ligand 1 (PD-L1). Under laser irradiation, photodynamic damage triggered by the nanointerferer induces the release of tumor antigens and recruitment of dendritic cells (DCs), thereby promoting the antitumor activity of CD8+ T cells in combination with anti-PD-L1 antibodies. Ultimately, these events markedly retard tumor progression in a mouse model of ectopic colon tumor with negligible adverse effects. This study provides an alternative treatment for effective antitumor immunity by exciting the intrinsic potential of tumor cells to initiate immune responses while reducing immune-related toxicities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call