Abstract

It was proven by Gonzalez-Meneses, Manchon and Silvero that the extreme Khovanov homology of a link diagram is isomorphic to the reduced (co)homology of the independence simplicial complex obtained from a bipartite circle graph constructed from the diagram. In this paper, we conjecture that this simplicial complex is always homotopy equivalent to a wedge of spheres. In particular, its homotopy type, if not contractible, would be a link invariant (up to suspension), and it would imply that the extreme Khovanov homology of any link diagram does not contain torsion. We prove the conjecture in many special cases and find it convincing to generalize it to every circle graph (intersection graph of chords in a circle). In particular, we prove it for the families of cactus, outerplanar, permutation and non-nested graphs. Conversely, we also give a method for constructing a permutation graph whose independence simplicial complex is homotopy equivalent to any given finite wedge of spheres. We also present some combinatorial results on the homotopy type of finite simplicial complexes and a theorem shedding light on previous results by Csorba, Nagel and Reiner, Jonsson and Barmak. We study the implications of our results to knot theory; more precisely, we compute the real-extreme Khovanov homology of torus links T(3, q) and obtain examples of H-thick knots whose extreme Khovanov homology groups are separated either by one or two gaps as long as desired.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.