Abstract
This paper provides an extensive study of the homotopy theory of types of algebras with units, like unital associative algebras or unital commutative algebras for instance. To this purpose, we endow the Koszul dual category of curved coalgebras, where the notion of quasi-isomorphism barely makes sense, with a model category structure Quillen equivalent to that of unital algebras. To prove such a result, we use recent methods based on presentable categories. This allows us to describe the homotopy properties of unital algebras in a simpler and richer way. Moreover, we endow the various model categories with several enrichments which induce suitable models for the mapping spaces and describe the formal deformations of morphisms of algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.