Abstract

In this paper, the steady boundary layer flow and heat transfer of a micropolar fluid on an isothermal continuously moving plane surface is studied analytically. It is assumed that the microinertia density is variable and the viscous dissipation effect is taken into account. The system of nonlinear ordinary differential equations is solved analytically using the homotopy analysis method (HAM) and the results are obtained for various flow and heat transfer characteristics. By using HAM, accurate analytic series solutions are obtained in the whole spatial region. Also, a new suggestion for choosing the proper value of the auxiliary parameter ℏ in the convergence region is proposed. It is observed that the present solutions have higher accuracy when the residual error is obtained. The present results show that this algorithm is effective and can be similarly applied to other nonlinear equations. Copyright © 2010 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call