Abstract

In this paper, we construct a homotopy Poisson algebra of degree 3 associated to a split Lie 2-algebroid, by which we give a new approach to characterize a split Lie 2-bialgebroid. We develop the differential calculus associated to a split Lie 2-algebroid and establish the Manin triple theory for split Lie 2-algebroids. More precisely, we give the notion of a strict Dirac structure and define a Manin triple for split Lie 2-algebroids to be a CLWX2-algebroid with two transversal strict Dirac structures. We show that there is a one-to-one correspondence between Manin triples for split Lie 2-algebroids and split Lie 2-bialgebroids. We further introduce the notion of a weak Dirac structure of a CLWX 2-algebroid and show that the graph of a Maurer–Cartan element of the homotopy Poisson algebra of degree 3 associated to a split Lie 2-bialgebroid is a weak Dirac structure. Various examples including the string Lie 2-algebra, split Lie 2-algebroids constructed from integrable distributions and left-symmetric algebroids are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.