Abstract

In this paper, Homotopy Perturbation Method is applied to solve the nonlinear MHD Jeffery–Hamel arterial blood flow problem. Primarily, two-dimensional nonlinear Navier–Stokes equations have been converted into third order one-dimensional equation by means of transformation rule. Later the solution of governed equation is obtained by using Homotopy Perturbation Method. The proposed numerical results show a good agreement with reference solution for finite interval and emphasize to understand the human arterial blood flow rate. Further, accuracy and reliability of the proposed method is checked by increasing the iteration process up to third order. Finally, the results showed that product of angle between plates “α” and Reynolds number “Re” is directly proportional to the MHD Jeffery–Hamel flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call