Abstract

Abstract Simple and efficient convex homotopy perturbation method (HPM) is presented to obtain an approximate solution of hyper-singular integral equations of the first kind. Convergence and error estimate of HPM are obtained. Three numerical examples were provided to verify the effectiveness of the HPM. Comparisons with reproducing kernel method (Chen et al., 2011) for the same number of iteration is also presented. Numerical examples reveal that the convergence of HPM can still be achieved for some problems even if the condition of convergence of HPM is not satisfied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.