Abstract
Homotopy methods have proven to be a powerful tool for understanding the multitude of solutions provided by the coupled-cluster polynomial equations. This endeavour has been pioneered by quantum chemists that have undertaken both elaborate numerical as well as mathematical investigations. Recently, from the perspective of applied mathematics, new interest in these approaches has emerged using both topological degree theory and algebraically oriented tools. This article provides an overview of describing the latter development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.