Abstract

Working in the context of symmetric spectra, we describe and study a homotopy completion tower for algebras and left modules over operads in the category of modules over a commutative ring spectrum (e.g., structured ring spectra). We prove a strong convergence theorem that for 0-connected algebras and modules over a (-1)-connected operad, the homotopy completion tower interpolates (in a strong sense) between topological Quillen homology and the identity functor. By systematically exploiting strong convergence, we prove several theorems concerning the topological Quillen homology of algebras and modules over operads. These include a theorem relating finiteness properties of topological Quillen homology groups and homotopy groups that can be thought of as a spectral algebra analog of Serre's finiteness theorem for spaces and H.R. Miller's boundedness result for simplicial commutative rings (but in reverse form). We also prove absolute and relative Hurewicz theorems and a corresponding Whitehead theorem for topological Quillen homology. Furthermore, we prove a rigidification theorem, which we use to describe completion with respect to topological Quillen homology (or TQ-completion). The TQ-completion construction can be thought of as a spectral algebra analog of Sullivan's localization and completion of spaces, Bousfield-Kan's completion of spaces with respect to homology, and Carlsson's and Arone-Kankaanrinta's completion and localization of spaces with respect to stable homotopy. We prove analogous results for algebras and left modules over operads in unbounded chain complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.