Abstract
We study the problem of existence and uniqueness of homotopy colimits in stable representation theory, where one typically does not have model category structures to guarantee that these homotopy colimits exist or have good properties. We get both negative results (homotopy cofibers fail to exist if there exist any objects of positive finite projective dimension!) and positive results (reasonable conditions under which homotopy colimits exist and are unique, even when model category structures fail to exist). Along the way, we obtain relative-homological-algebraic generalizations of classical theorems of Hilton-Rees and Oort. We describe some applications to Waldhausen $K$-theory and to deformation-theoretic methods in stable representation theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.