Abstract

For a class of Hamiltonian systems in ℝ4 the set of homoclinic and heteroclinic orbits which connect saddle-focus equilibria is studied using a variational approach. The oscillatory properties of a saddle-focus equilibrium and the variational nature of the problem give rise to connections in many homotopy classes of the configuration plane punctured at the saddle-foci. This variational approach does not require any assumptions on the intersections of stable and unstable manifolds, such as transversality. Moreover, these connections are shown to be local minimizers of an associated action functional. This result has applications to spatial pattern formation in a class of fourth-order bistable evolution equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.