Abstract

Algebraic quantum field theory and prefactorization algebra are two mathematical approaches to quantum field theory. In this monograph, using a new coend definition of the Boardman-Vogt construction of a colored operad, we define homotopy algebraic quantum field theories and homotopy prefactorization algebras and investigate their homotopy coherent structures. Homotopy coherent diagrams, homotopy inverses, A-infinity-algebras, E-infinity-algebras, and E-infinity-modules arise naturally in this context. In particular, each homotopy algebraic quantum field theory has the structure of a homotopy coherent diagram of A-infinity-algebras and satisfies a homotopy coherent version of the causality axiom. When the time-slice axiom is defined for algebraic quantum field theory, a homotopy coherent version of the time-slice axiom is satisfied by each homotopy algebraic quantum field theory. Over each topological space, every homotopy prefactorization algebra has the structure of a homotopy coherent diagram of E-infinity-modules over an E-infinity-algebra. To compare the two approaches, we construct a comparison morphism from the colored operad for (homotopy) prefactorization algebras to the colored operad for (homotopy) algebraic quantum field theories and study the induced adjunctions on algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.