Abstract
This paper provides a homotopical version of the adjoint lifting theorem in category theory, allowing for Quillen equivalences to be lifted from monoidal model categories to categories of algebras over colored operads. The generality of our approach allows us to simultaneously answer questions of rectification and of changing the base model category to a Quillen equivalent one. We work in the setting of colored operads, and we do not require them to be $$\Sigma $$ -cofibrant. Special cases of our main theorem recover many known results regarding rectification and change of model category, as well as numerous new results. In particular, we recover a recent result of Richter–Shipley about a zig-zag of Quillen equivalences between commutative $$H\mathbb {Q}$$ -algebra spectra and commutative differential graded $$\mathbb {Q}$$ -algebras, but our version involves only three Quillen equivalences instead of six. We also work out the theory of how to lift Quillen equivalences to categories of colored operad algebras after a left Bousfield localization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.