Abstract

The notion of quasi-Jordan algebras was originally proposed by R. Velasquez and R. Fellipe. Later, M. R. Bremner provided a modification called K-B quasi-Jordan algebras; these include all Jordan algebras and all dialgebras, and hence all associative algebras. Any quasi-Jordan algebra is special if it is isomorphic to a quasi-Jordan subalgebra of some dialgebras. Keeping in view the pivotal role of homotopes in the theory of Jordan algebras, we begin a study of the homotopes of quasi-Jordan algebras; among other related results, we show that the homotopes of any special quasi-Jordan algebra are special quasi-Jordan algebras and that the homotopes of a K-B quasi-Jordan algebra is a quasi-Jordan algebra. In the sequel, we also give some open problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.