Abstract

Introduction of structural constraint into peptides is an effective way for studying their conformation-activity relationships. Conformationally restrained dipeptidyl lactams, important building blocks for the synthesis of peptidomimetics, have now been synthesized from N-[9-(9-phenylfluorenyl)]-L-aspartic acid alpha-cumyl beta-methyl diester as an inexpensive chiral educt. After selective reduction of the beta-methyl ester with diisobutylaluminum hydride (DIBAL-H), homoserine was treated with thionyl chloride, imidazole, and triethylamine to give sulfamidites. Diastereoisomers were separated by chromatography and oxidation of the major sulfamidite (2R,4S)- with catalytic ruthenium trichloride afforded sulfamidate. A series of gamma-lactam-bridged dipeptides was then obtained by ring opening of sulfamidate cumyl ester with a series of amino esters, selective cumyl ester removal, and lactam formation. The resulting dipeptidyl lactams possessed aliphatic, aromatic, amino, thioether, and carboxylate side chains. A gamma-lactam analog of Pro-Leu-Gly-NH2 (PLG), was synthesized to illustrate the potential for using this approach in the synthesis of biologically active peptide mimics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call