Abstract

AbstractOnline social networks are highly dynamic and sparse. One of the main problems in analyzing these networks is the problem of predicting the existence of links between users on these networks: the link prediction problem. Many studies have been conducted to predict links using a variety of techniques like the decision tree and the logistic regression approaches. In this work, we will illustrate the use of the rough set theory in predicting links over the Facebook social network based on homophilic features. Other supervised learning algorithms are also employed in our experiments and compared with the rough set classifier, such as naive Bayes, J48 decision tree, support vector machine, logistic regression, and multilayer perceptron neural network. Moreover, we studied the influence of the “common groups” and “common page likes” homophilic features on predicting friendship between users of Facebook, and also studied the effect of using the Jaccard coefficient in measuring the similarity between users’ homophilic attributes compared with using the overlap coefficient. We conducted our experiments on two different datasets obtained from the Facebook online social network, where users in each dataset live within the same geographical region. The results showed that the rough set classifier significantly outperformed the other classifiers in all experiments. The results also demonstrated that the common groups and the common page likes features have a significant influence on predicting the friendship between users of Facebook. Finally, the results revealed that using the overlap coefficient homophilic features provided better results than that of the Jaccard coefficient features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.