Abstract
Homomorphic Encryption (HE) allows encrypted data to be processed without decryption, which could maximize the protection of user privacy without affecting the data utility. Thanks to strides made by cryptographers in the past few years, the efficiency of HE has been drastically improved, and machine learning on homomorphically encrypted data has become possible. Several works have explored machine learning based on HE, but most of them are restricted to the outsourced scenario, where all the data comes from a single data owner. We propose HomoPAI, an HE-based secure collaborative machine learning system, enabling a more promising scenario, where data from multiple data owners could be securely processed. Moreover, we integrate our system with the popular MPI framework to achieve parallel HE computations. Experiments show that our system can train a logistic regression model on millions of homomorphically encrypted data in less than two minutes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.