Abstract
A novel homomorphic wavelet thresholding technique for reducing speckle noise in medical ultrasound images is presented. First, we show that the speckle wavelet coefficients in the logarithmically transformed ultrasound images are best described by the Nakagami family of distributions. By exploiting this speckle model and the Laplacian signal prior, a closed form, data-driven, and spatially adaptive threshold is derived in the Bayesian framework. The spatial adaptivity allows the additional information of the image (such as identification of homogeneous or heterogeneous regions) to be incorporated into the algorithm. Further, the threshold has been extended to the redundant wavelet representation, which yields better results than the decimated wavelet transform. Experimental results demonstrate the improved performance of the proposed method over other well-known speckle reduction filters. The application of the proposed method to a realistic US test image shows that the new technique, named HomoGenThresh, outperforms the best wavelet-based denoising method reported in [1] by more than 1.6 dB, Lee filter by 3.6 dB, Kaun filter by 3.1 dB and band-adaptive soft thresholding [2] by 2.1 dB at an input signal-to-noise ratio (SNR) of 13.6 dB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.