Abstract

Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine-quinone systems and explore their potential for the activation of C-H bonds. PMes3 (Mes=2,4,6-Me3 C6 H2 ) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P-O bonded zwitterionic adduct Mes3 P-DDQ (1), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3 C6 H2 ) afforded C-H bond activation product Tip2 P(H)(2-[CMe2 (DDQ)]-4,6-iPr2 -C6 H2 ) (2). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3 ]⋅+ [DDQ]⋅- , and subsequent homolytic C-H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2 P(H)(2-[CMe2 {TCQ-B(C6 F5 )3 }]-4,6-iPr2 -C6 H2 ) (4, TCQ=tetrachloro-1,4-benzoquinone) and Tip2 P(H)(2-[CMe2 {oQtBu -B(C6 F5 )3 }]-4,6-iPr2 -C6 H2 ) (8, oQtBu =3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ-B(C6 F5 )3 and oQtBu -B(C6 F5 )3 , respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C-H bond activation by the synergistic action of radical ion pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.