Abstract

We have presented in this book a theory of cubical homology. Our justification for this approach lies in the applications described in Chapters 1, 8, and 10, where we are required to work with large sets of data and for which we need a computationally effective means of computing homology. In all these examples the data itself naturally generates cubical sets. However, this cubical homology theory is unconventional, and furthermore, there is a wide variety of other homology theories available.KeywordsSimplicial ComplexChain ComplexSimplicial TheoryCategory TheoryAlgebraic TopologyThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.