Abstract

Streptococcus pneumoniae is among the major human pathogens. Several interactions of this bacterium with its host appear to have been mediated by bacterial cell wall components. Specifically, phosphorylcholine residues covalently attached to teichoic and lipoteichoic acids serve as anchors for many surface-located proteins (choline-binding proteins CBPs), including cell-adhesion and virulence factors, and are also recognized by host response components through choline-binding receptors. In this study, we have performed modelling of the catalytic domain of pneumococcal phosphorylcholine esterase (Pce), a modular enzyme that is capable of removing phosphorycholine residues from teichoic and lipoteichoic acids, remodelling their distribution on the bacterial envelope. We wish to contribute to the structural knowledge of Pce. In this pursuit, 3D models of Pce have been established by homology modelling, using the X-ray structure of enzymes from the α/β metallo-lactamase family fold as templates. Theoretical models of pneumococcal phosphorylcholine esterase (Pce) catalytic modules obtained by homology modelling, and corresponding docking studies employed to find out the residues involved in the binding of Zn ions, are discussed according to mutational studies and ab initio calculations. The presence of a binuclear Zn cluster in the catalytic domain of Pce and a likely coordination model are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.