Abstract

Using comparative modeling, we have generated structural models of 475 alpha and beta tubulins. Using these models, we observed a global, structural similarity between the tubulin isotypes. However, a number of subtle differences in the isotypes physical properties, including net electric charges, solvent accessible surface areas, and electric dipole moments were also apparent. In order to examine the roles that these properties may play in microtubule (MT) assembly and stability, we have created a model to evaluate the dipole-dipole interaction energies of varying MT lattice conformations, using human tubulin isotypes as particularly important examples. We conclude that the dipole moments of each tubulin isotype may influence their functional characteristics within the cell, resulting in differences for MT assembly kinetics and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.