Abstract

Homology models of the E. coli and T. maritima chemotaxis protein CheW were constructed to assess the quality of structural predictions and their applicability in chemotaxis research: i) a model of E. coli CheW was constructed using the T. maritima CheW NMR structure as a template, and ii) a model of T. maritima CheW was constructed using the E. coli CheW NMR structure as a template. The conformational space accessible to the homology models and to the NMR structures was investigated using molecular dynamics and Monte Carlo simulations. The results show that even though static homology models of CheW may be partially structurally different from their corresponding experimentally determined structures, the conformational space they can access through their dynamic variations can be similar, for specific regions of the protein, to that of the experimental NMR structures. When CheW homology models are allowed to explore their local accessible conformational space, modeling can provide a rational path to predicting CheW interactions with the MCP and CheA proteins of the chemotaxis complex. Homology models of CheW (and potentially, of other chemotaxis proteins) should be seen as snapshots of an otherwise larger ensemble of accessible conformational space.

Highlights

  • Bacterial chemotaxis is widely used as a model to study signal transduction in biological systems

  • Despite its crucial role as a scaffold protein in chemotaxis, CheW sequences from T. maritima and E. coli show no spatial co-localization of conserved residues in the 3D structure (Figure 2.A.)

  • This work shows that it is possible to construct a reliable ensemble of CheW homology models despite low sequence identity between a CheW target sequence and its template

Read more

Summary

Introduction

Bacterial chemotaxis is widely used as a model to study signal transduction in biological systems. The core signaling complex in chemotaxis consists of chemoreceptors and the histidine kinase, CheA, that are linked by the coupling protein, CheW. Chemoreceptors detect various extracellular and intracellular stimuli and modulate CheA activity, which transduces the signals to the flagellar apparatus via its cognate response regulator, CheY [1], [2]. The signaling complex assembles into organized arrays at the cell poles, where chemoreceptors cooperatively regulate kinase activity [3], [4]. This high-order structure is critical for signal amplification, the remarkable sensitivity of the system, and its precise adaptation [5], [6].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.