Abstract

Glutamate dehydrogenase (GDH), which is present in most bacteria and eukaryotes’ mitochondria, plays an important role in amino acid metabolism. In general, GDH converts 2-oxoglutarate to l-glutamate using NAD(P)H as a cofactor, and vice versa. Acquiring more structural information about the GDH of Synechocystis sp. PCC 6803 could be helpful in many studies related to amino acid metabolism in cyanobacteria. In this study, homology modeling studies were conducted to achieve an acceptable structure of the GDH using recognized templates. To this end, a computational approach was used to demonstrate the coenzyme specificity of GDH for NADPH and NADH. The present study involved homology modeling of GDH and docking analyses of NADPH, NADH, 2-oxoglutarate, and l-glutamate into the predictive model of GDH. The results of this study suggest that GDH has similar coenzyme specificity for NADH and NADPH, while NADH has a better binding affinity than NADPH. Furthermore, the binding sites of 2-oxoglutarate and l-glutamate are similar to each other with differences in binding affinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.