Abstract

Centella asiatica is a well-known medicinal plant, produces large amount of triterpenoid saponins, collectively known as centelloids, with a wide-spectrum of pharmacological applications. Various strategies have been developed for the production of plant secondary metabolites in cell and tissue cultures; one of these is modular metabolic engineering, in which one of the competitive metabolic pathways is selectively suppressed to channelize precursor molecules for the production of desired molecules by another route. In plants the precursor 2,3-oxidosqualene is shared in between two competitive pathways involved with two isoforms of oxidosqualene cyclases. One is primary metabolic route for the synthesis of phytosterol like cycloartenol by cycloartenol synthase; another is secondary metabolic route for the synthesis of triterpenoid like β-amyrin by β-amyrin synthase. The present work is envisaged to evaluate specific negative modulators for cycloartenol synthase, to channelize the precursor molecule for the production of triterpenoids. As there are no experimentally determined structures for these enzymes reported in the literature, we have modeled the protein structures and were docked with a panel of ligands. Of the various modulators tested, ketoconazole has been evaluated as the negative modulator of primary metabolism that inhibits cycloartenol synthase specifically, while showing no interaction with β-amyrin synthase. Amino acid substitution studies confirmed that, ketoconazole is specific modulator for cycloartenol synthase, LYS728 is the key amino acid for the interaction. Our present study is a novel approach for identifying a suitable specific positive modulator for the over production of desired triterpenoid secondary metabolites in the cell cultures of plants.

Highlights

  • Plant natural products and their derivatives play an important role in modern health care as frontline treatments for many diseases and as inspiration for chemical synthesized therapeutics (Pickens et al 2011)

  • The aim of the present study is to evaluate and suggest suitable modulators that function like inhibitors for sterol biosynthesis, while without affecting the biosynthesis of triterpenoid secondary metabolites of C. asiatica

  • The stereo chemical quality of the predicted models and accuracy of the protein model was evaluated by Ramachandran Map calculations computed with the RAMPAGE and the results showed that 92.9% residues of cycloartenol synthase and 90.09% residues of β-amyrin synthase are in favoured region (Table 3, Figure 4)

Read more

Summary

Introduction

Plant natural products and their derivatives play an important role in modern health care as frontline treatments for many diseases and as inspiration for chemical synthesized therapeutics (Pickens et al 2011). Centella asiatica (L.) Urban, is a well-known medicinal plant, belongs to the family Apiaceae, has tremendous medicinal value and used as an important folk medicinal herb by natives of Asia, southern and middle Africa, southeastern United States and Australia, with a long history of therapeutic uses since. The plant contains large amount of triterpenoid saponins, collectively known as centelloids, includes asiaticoside, centelloside, madecassoside, brahmoside, brahminoside, thankuniside, sceffoleoside, centellose, asiatic-, brahmic-, centellic- and madecassic acids. The pharmacological and therapeutic applications of these triterpenes are mainly pentacyclic triterpenic acids and their respective glycosides, belonging to ursane- or oleanane-type, including asiatic acid, asiaticoside, madecassic acid, madecassoside, Source

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call