Abstract

The repeat-induced point mutation mechanism (RIP) is the most intriguing among the known mechanisms of homology-dependent gene inactivation (silencing) because of its ability to produce irreversible mutations in repetitive DNA sequences. Discovered for the first time in Neurospora crassa, RIP is characterized by C:G to T:A transitions in duplicated sequences. The mechanisms and range of occurrence of RIP are still poorly understood. Mobile elements, including retrotransposons, are a common target for the processes that lead to homology-dependent silencing because of their ability to propagate themselves. Comparative analysis of LTR retrotransposons was performed throughout the genomes of two ascomycetes, Aspergillus fumigatus and A. nidulans. “De-RIP” retroelements were reconstructed on the basis of several copies. CpG, CpA, and TpG sites, which are potential targets for mutagenesis, were found at a much lower frequency in mobile elements than in structural genes. The dinucleotide targets of the two species are affected by RIP at different frequencies: mutagenesis occurs at both CpG and CpA sites in A. fumigatus and is confined to CpG dinucleotides in A. nidulans. This work provides a theoretical background for planning the experimental investigation of RIP inactivation in aspergilli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.