Abstract
This chapter opens with homology and cohomology theories which play a key role in algebraic topology. Homology and cohomology groups are also topological invariants like homotopy groups and Euler characteristic. Homology (cohomology) theory is a sequence of covariant (contravariant) functors from the category of chain (cochain) complexes to the category of abelian groups (modules). A key feature of these functors is their homotopy invariance in the sense that homotopic maps induce the same homomorphism in homology (cohomology). In particular, topological spaces of the same homotopy type have isomorphic homology (cohomolgy) groups.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.