Abstract

BackgroundThe recombinant antigen BmR1 has been extensively employed in both ELISA and immunochromatographic rapid dipstick (Brugia Rapid) formats for the specific and sensitive detection of IgG4 antibodies against the lymphatic filarial parasites Brugia malayi and Brugia timori. In sera of individuals infected with Wuchereria bancrofti the IgG4 reactivity to BmR1 is variable, and cross-reactivity of sera from individuals infected with Onchocerca volvulus or Loa loa was observed only in single cases. In order to characterize the homologs of the BmR1 antigen in W. bancrofti (Wb-BmR1), O. volvulus (Ov-BmR1) and L. loa (Ll-BmR1) the cDNA sequences were identified, the protein expressed and the antibody reactivity of patients' sera was studied.MethodsPCR methodology was used to identify the cDNA sequences from cDNA libraries and/or genomic DNA of W. bancrofti, O. volvulus and L. loa. The clones obtained were sequenced and compared to the cDNA sequence of BmR1. Ov-BmR1 and Ll-BmR1 were expressed in E. coli and tested using an IgG4-ELISA with 262 serum samples from individuals with or without B. malayi, W. bancrofti, O. volvulus and L. loa infections or various other parasitic infections. BmR1, Ov-BmR1 and Ll-BmR1 were also tested for reactivity with the other three IgG subclasses in patients' sera.ResultsWb-BmR1 was found to be identical to BmR1. Ov-BmR1 and Ll-BmR1 were found to be identical to each other and share 99.7% homology with BmR1. The pattern of IgG4 recognition of all serum samples to BmR1, Ov-BmR1 and Ll-BmR1 were identical. This included weak IgG4 reactivities demonstrated by L. loa- and O. volvulus-infected patients tested with Ov-BmR1 and Ll-BmR1 (or BmR1). With respect to reactivity to other IgG subclasses, sera from O. volvulus- and L. loa-infected patients showed positive reactions (when tested with BmR1, Ov-BmR1 or Ll-BmR1 antigens) only with IgG1. No reactivity was observed with IgG2 or with IgG3. Similarly, ELISAs to detect reactivity to other anti-filarial IgG subclasses antibodies showed that sera from individuals infected with B. malayi or W. bancrofti (active infections as well as patients with chronic disease) were positive with BmR1 only for IgG1 and were negative when tested with IgG2 and with IgG3 subclasses.ConclusionsThis study demonstrates that homologs of the BmR1 antigen are present in W. bancrofti, O. volvulus and L. loa and that these antigens are highly conserved. Recognition of this antigen by patients' sera is similar with regard to IgG1, IgG2 and IgG3, but different for IgG4 antibodies. We conclude that the BmR1 antigen is suitable for detection of IgG4 antibodies in brugian filariasis. However, its homologs are not suitable for IgG4-based diagnosis of other filarial infections.

Highlights

  • The recombinant antigen BmR1 has been extensively employed in both ELISA and immunochromatographic rapid dipstick (Brugia Rapid) formats for the specific and sensitive detection of IgG4 antibodies against the lymphatic filarial parasites Brugia malayi and Brugia timori

  • The antigen has been used in both ELISA and immunochromatographic rapid dipstick (Brugia Rapid) formats, and evaluation in various laboratories and field trials has revealed a sensitivity of 93%–100% in detecting microfilariaemic individuals [9,10,11,12,13]

  • Identification of the BmR1 homolog in W. bancrofti, O. volvulus and L. loa In order to explain the pattern of antigen recognition in patients with other filarial infection we identified the homologs of the BmR1 antigen in W. bancrofti (WbBmR1), O. volvulus (Ov-BmR1) and L. loa (LI-BmR1)

Read more

Summary

Introduction

The recombinant antigen BmR1 has been extensively employed in both ELISA and immunochromatographic rapid dipstick (Brugia Rapid) formats for the specific and sensitive detection of IgG4 antibodies against the lymphatic filarial parasites Brugia malayi and Brugia timori. In May 2000, The Global Program for Elimination of Lymphatic Filariasis (GPELF http://www.filariasis.org/) was officially formed with the goal of eliminating the disease as a public health problem by the year 2020 To this end, sensitive and specific field-applicable diagnostic tools are required for mapping the distribution of the disease and monitoring the various phases of the program. For bancroftian filariasis caused by Wuchereria bancrofti, the ICT antigen card test (Binax Inc., USA http://www.binax.com/) is widely used for this purpose. This test is based on the detection of a circulating adult worm antigen of W. bancrofti. Despite its inconvenience and insensitivity, routine diagnosis of brugian filariasis is made by light microscopy of night blood

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call