Abstract
Although DNA double-strand breaks (DSBs) are substrates for homologous recombination (HR) repair, it is becoming apparent that DNA lesions produced at replication forks, for instance by many anticancer drugs, are more significant substrates for HR repair. Cells defective in HR are hypersensitive to a wide variety of anticancer drugs, including those that do not produce DSBs. Several cancers have mutations in or epigenetically silenced HR genes, which explain the genetic instability that drives cancer development. There are an increasing number of reports suggesting that mutation or epigenetic silencing of HR genes explains the sensitivity of cancers to current chemotherapy treatments. Furthermore, there are also many examples of re-expression of HR genes in tumours to explain drug resistance. Emerging data suggest that there are several different subpathways of HR, which can compensate for each other. Unravelling the overlapping pathways in HR showed that BRCA1- and BRCA2-defective cells rely on the PARP protein for survival. This synthetic lethal interaction is now being exploited for selective treatment of BRCA1- and BRCA2-defective cancers with PARP inhibitors. Here, I discuss the diversity of HR and how it impacts on cancer with a particular focus on how HR can be exploited in future anticancer strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.