Abstract

Clinical testing for homologous repair (HR) deficiency (HRD) in ovarian cancers has emerged as a means to tailor the use of poly(ADP-ribose)polymerase (PARP) inhibitor therapy to the patients most likely to respond. The currently available HRD tests evaluate tumor tissue for genomic evidence of impairment of the HR pathway of DNA damage repair, which, if present, renders the tumor vulnerable to PARP inhibitors in conjunction with platinum chemotherapy. Germline or somatic mutation of BRCA1/2 is a major contributor HRD. Thus, tubo-ovarian/peritoneal high-grade serous carcinoma (HGSC) is enriched by HRD. After highlighting the general concepts underlying HRD testing and PARP inhibitor therapy, this review discusses practical roles for pathologists to maximize the opportunities for eligible patients with ovarian cancer to benefit from HRD testing, chiefly by applying contemporary diagnostic criteria for ovarian cancer tumor typing and navigating through potential pitfalls of tumor types that may mimic HGSC but are unlikely to harbor HRD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call