Abstract
Avian influenza A viruses (AIVs), including the H5N1, H9N2, and H7N7 subtypes, have been directly transmitted to humans, raising concerns over the possibility of a new influenza pandemic. To prevent a future avian influenza pandemic, it is very important to fully understand the molecular basis driving the change in AIV virulence and host tropism. Although virulent variants of other viruses have been generated by homologous recombination, the occurrence of homologous recombination within AIV segments is controversial and far from proven. This study reports three circulating H9N2 AIVs with similar mosaic PA genes descended from H9N2 and H5N1. Additionally, many homologous recombinants are also found deposited in GenBank. Recombination events can occur in PB2, PB1, PA, HA, and NP segments and between lineages of the same/different serotype. These results collectively demonstrate that intragenic recombination plays a role in driving the evolution of AIVs, potentially resulting in effects on AIV virulence and host tropism changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.