Abstract
The structure and evolution of angiosperm mitochondrial genomes are driven by extremely high rates of recombination and rearrangement. An excellent experimental system for studying these events is offered by cybrid plants, in which parental mitochondria usually fuse and their genomes recombine. Little is known about the extent, nature and consequences of mitochondrial recombination in these plants. We conducted the first study in which the organellar genomes of a cybrid - between Nicotiana tabacum and Hyoscyamus niger - were sequenced and compared to those of its parents. This cybrid mitochondrial genome is highly recombinant, reflecting at least 30 crossovers and five gene conversions between its parental genomes. It is also surprisingly large (41% and 64% larger than the parental genomes), yet contains single alleles for 90% of mitochondrial genes. Recombination produced a remarkably chimeric cybrid mitochondrial genome and occurred entirely via homologous mechanisms involving the double-strand break repair and/or break-induced replication pathways. Retention of a single form of most genes could be advantageous to minimize intracellular incompatibilities and/or reflect neutral forces that preferentially eliminate duplicated regions. We discuss the relevance of these findings to the surprisingly frequent occurrence of horizontal gene - and genome - transfer in angiosperm mitochondrial DNAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.