Abstract

The RecA protein of Escherichia coli forms a nucleoprotein filament that promotes homologous recognition and subsequent strand exchange between a single strand and duplex DNA via a three-stranded intermediate. Recognition of homology within three-stranded nucleoprotein complexes, which is probably central to genetic recombination, is not well understood as compared with the mutual recognition of complementary single strands by Watson-Crick base pairing. Using oligonucleotides, we examined the determinants of homologous recognition within RecA nucleoprotein filaments. Filaments that contained a single strand of DNA recognized homology not only in a complementary oligonucleotide but also in an identical oligonucleotide, whether their respective sugar-phosphate backbones were antiparallel or parallel, and a filament that contained duplex DNA showed the same polymorphic versatility in the recognition of homology. Recognition of self by a filament that contains a single strand reveals that RecA filaments can recognize homology via non-Watson-Crick hydrogen bonds. Recognition of multiple forms of the same sequence by duplex DNA in the filament shows that it primarily senses base-sequence homology, and suggests that recognition can be accomplished prior to the establishment of new Watson-Crick base pairs in heteroduplex products. However, unlike the initial recognition of homology, strand exchange is stereospecific, requiring the proper antiparallel orientation of complementary strands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call