Abstract
BackgroundIt is not clear how foreign DNA molecules insert into the host genome. Recently, we have produced transgenic mice to investigate the role of the fad2 gene in the conversion of oleic acid to linoleic acid. Here we describe an integration mechanism of fad2 transgene by homologous illegitimate random integration.ResultsWe confirmed that one fad2 line had a sole integration site on the X chromosome according to the inheritance patterns. Mapping of insertion sequences with thermal asymmetric interlaced and conventional PCR revealed that the foreign DNA was inserted into the XC1 region of the X chromosome by a homologous illegitimate replacement of an entire 45,556-bp endogenous genomic region, including the ovarian granulosa cell tumourigenesis-4 allele. For 5' and 3' junction sequences, there were very short (3-7 bp) common sequences in the AT-rich domains, which may mediate the recognition of the homologous arms between the transgene and the host genome. In addition, analysis of gene transcription indicated that the transgene was expressed in all tested fad2 tissues and that its transcription level in homozygous female tissues was about twice as high as in the heterozygous female (p < 0.05).ConclusionsTaken together, the results indicated that the foreign fad2 behaved like an X-linked gene and that foreign DNA molecules were inserted into the eukaryotic genome through a homologous illegitimate random integration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: BMC Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.