Abstract
Gram-positive soil bacteria Arthrobacter nicotinovorans, Nocardioides sp. JS614 and Rhodococcus opacus were shown to contain similarly organized clusters of homologous genes for nicotine catabolism. An uncharacterized gene of a predicted nitrilase within these gene clusters was cloned from A. nicotinovorans and biochemical data unexpectedly showed that the protein exhibited ω-amidase activity toward α-ketoglutaramate. Structural modelling of the protein suggested the presence of the catalytic triad Cys-Glu-Lys, characteristic of this class of enzymes, and supported α-ketoglutaramate as substrate. A-ketoglutaramate could be generated by hydrolytic cleavage of the C–N bond of the trihydroxypyridine ring produced by nicotine catabolism in these bacteria. This ω-amidase, together with glutamate dehydrogenase, may form a physiologically relevant enzyme couple, leading to transformation of metabolically inert α-ketoglutaramate derived from trihydroxypyridine into glutamate, a central compound of nitrogen metabolism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.