Abstract

Abstract Organisms such as allopolyploids and F1 hybrids contain multiple distinct subgenomes, each potentially with its own evolutionary history. These organisms present a challenge for multilocus phylogenetic inference and other analyses since it is not apparent which gene copies from different loci are from the same subgenome and thus share an evolutionary history. Here we introduce homologizer, a flexible Bayesian approach that uses a phylogenetic framework to infer the phasing of gene copies across loci into their respective subgenomes. Through the use of simulation tests, we demonstrate that homologizer is robust to a wide range of factors, such as incomplete lineage sorting and the phylogenetic informativeness of loci. Furthermore, we establish the utility of homologizer on real data, by analysing a multilocus dataset consisting of nine diploids and 19 tetraploids from the fern family Cystopteridaceae. Finally, we describe how homologizer may potentially be used beyond its core phasing functionality to identify non‐homologous sequences, such as hidden paralogs or contaminants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.