Abstract
Given a graded $E_1$-module over an $E_2$-algebra in spaces, we construct an augmented semi-simplicial space up to higher coherent homotopy over it, called its canonical resolution, whose graded connectivity yields homological stability for the graded pieces of the module with respect to constant and abelian coefficients. We furthermore introduce a notion of coefficient systems of finite degree in this context and show that, without further assumptions, the corresponding twisted homology groups stabilize as well. This generalizes a framework of Randal-Williams and Wahl for families of discrete groups. In many examples, the canonical resolution recovers geometric resolutions with known connectivity bounds. As a consequence, we derive new twisted homological stability results for e.g. moduli spaces of high-dimensional manifolds, unordered configuration spaces of manifolds with labels in a fibration, and moduli spaces of manifolds equipped with unordered embedded discs. This in turn implies representation stability for the ordered variants of the latter examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.