Abstract

An abelian group A is quotient divisible if its torsion subgroup tA is reduced, and it contains a finitely generated free subgroup F such that A/F is the direct sum of a finite and a divisible torsion group. This paper focuses on homological properties of quotient divisible groups. A group A such that tA is reduced is quotient divisible if and only if it is small with respect to the class of quotient divisible groups. Further results investigate when an A-generated torsion group is A-solvable. The last section discusses quotient divisible groups A such that ℚ ⊗ℤ E(A)/tE(A) is a quasi-Frobenius ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.