Abstract
Certain classes of lean quasi-hereditary algebras play a central role in the representation theory of semisimple complex Lie algebras and algebraic groups. The concept of a lean semiprimary ring, introduced recently in [1] is given here a homological characterization in terms of the surjectivity of certain induced maps between Ext1-groups. A stronger condition requiring the surjectivity of the induced maps between Extk-groups for allk≥1, which appears in the recent work of Cline, Parshall and Scott on Kazhdan-Lusztig theory, is shown to hold for a large class of lean quasi-hereditary algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.